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Abstract

Parallel computing has become an affordable reality forcing a shift in the programming
paradigm from sequential to concurrent applications, specially those who demand much
computational power or with large search spaces like SAT-solvers. In this context we
present the research, planning and implementation of PMSat: a parallel version of MiniSAT
with MPI (Message Passing Interface) technology, to be executed in clusters or grids of
computers. The main features of the program are described: search modes, search space
pruning and share of learnt clauses. An analysis of its performance and load balance is also
presented.
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1. Introduction

The SAT problem is concerned with the task of finding satisfying assignments to boolean
formulas of propositional logic. It is associated to computational complexity by being the
first NP-Complete problem ever found [5]. Its applications range from industry to science
where many problems like EDA (Electronic Design Automation), search, planning and
formal verification, are converted into boolean formulas and solved by specialized programs
called SAT-solvers. This is done because it is easier to solve the problem in SAT than in
its original domain with a specialized algorithm. By being at the same time a useful and
hard to solve problem, much research has been devoted to develop methods and algorithms
to process larger problems faster and with limited resources. Algorithmic advances over
the last ten or so years have seen enourmous progress in the ability to handle large scale,
real-life problems by current day sophisticated and efficient solvers.
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The widespread availability of increasingly faster computational power, has also re-
sparked the interest in new distributed paradigms potentially able to improve the capacity
or efficiency of heavy computations such as those required by modern day SAT solvers.
Researchers in parallel and grid computing have therefore proceeded to develop their own
SAT-solver implementations in order to investigate the performance of these programs in
a distributed environment and what would be the potential gains with the increase of
computational power.

In this work, we present the research, development and performance analysis of PMSat:
a parallel SAT-solver based on MiniSAT [7] that uses MPI technology to be executed in a
cluster or grid of computers. The architecture of PMSat is that of a master-slave hierarchy,
where the master generates tasks that the solvers work on. Tasks generated by the master
correspond to subsets of the search space where certain assignments or assumptions were
made with respect to some of the problem’s variables. The main features that set PMSat
apart from existing work in the area, are related to the variables selection and assumptions
generation process used to partition the search space, as well as the assumptions pruning
and the sharing of learnt clauses and automatic settings. Several modes of operation are
available for partitioning the search space between the various computing units. Sharing
of learnt clauses is also enabled in order to improve prunning of the space in subsequent
searches. All of these features contribute to determine to what extent such architectures can
be advantageous to SAT solution of large problems, which could be construed as another goal
of this work. The usage of MPI as the underlying technology for distributed computation
is also an important aspect of this work. MPI has long become the de facto standard
for parallel computation and applications based on MPI are portable to a large set of
environments, possibly with very distinct characteristics and structure.

This paper is organized as follows: Section 2 presents the basic background in Logic,
describes the gest of the algorithms used by modern SAT-solvers, describes briefly some
parallel SAT-solvers and explains PMSat’s main specifications. Section 3 presents the par-
allel algorithm of PMSat, Section 4 shows its implementation details, Section 5 presents the
performance achievements. Finally Section 6 discusses the conclusion of the work.

2. Background and previous work

This section reviews, in a very general way, the basic algorithms used by a sequential SAT-
solver. Then some parallel SAT-solvers and their features are presented and finally the
technological choices for PMSat are discussed.

2.1 Logic and SAT-solvers

The SAT problem is about to determine whether a propositional formula can be evaluated as
true. There are programs called SAT-solvers to make this test automatically. Propositional
formulas are built over a set of boolean variables (denoted here by characters of greek
alphabet) and related by the operators ∨, ∧ and ¬ named conjunction, disjunction and
complement, respectively. A literal is a variable or its complement. A clause is a disjunction
of literals. A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses, for
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instance (ϕ ∨ ¬ψ ∨ γ) ∧ (ϕ ∨ ¬δ). An assignment is a mapping from a set of variables to
{true, false}. For n variables there are 2n different combinations of assignments. A formula
is satisfiable if there exists an assignment that makes it true. That assignment is known
as a solution to the problem. Otherwise the formula is unsatisfiable. In the worst case one
needs to test an exponential number of assignments to determine whether a solution exists.

Most SAT-solvers search for satisfiability using variations of the Davis-Putnam algo-
rithm [6] combined with backtracking, learning and propagation procedures. Figure 1
presents the main loop of a generic SAT-solver.

while(true){

if(!decide()) return SAT;

while(!BCP()){

if(!resolveConflict()) return UNSAT;

}

}

Figure 1. Davis-Putnam algorithm

The decide() function selects an unassigned variable, sets it to true or false by some,
usually heuristic, method and evaluates the formula. If all clauses are satisfied and no
conflicts exist the formula is satisfiable. An unit clause is a clause that has one unassigned
literal and all the others assigned as false. An implication is to assign as true the remaining
literal in an unit clause. A conflict happens when the same variable is set to true in one
implication and false in another. The BCP() function is responsible for carrying the Boolean
Constraint Propagation: to identify unit clauses and create implications until there are no
more implications or a conflict arises.

The decisions are saved in a stack called decision stack. Each decision is associated
to an integer tag called decision level that corresponds to the height of the decision in the
stack. Every implication is related to the corresponding decision by the decision level, which
makes it easy to find the decision responsible for an implication. The resolveConflict() is
responsible for undoing all the implications of the current decision level and flip the value
of the decision. If both values of the decision have already been tried, a backtrack is made
in the decision stack (canceling decisions and implications) until one finds a decision not
tried both ways. If no such decision can be found, and we reach the decision level zero,
then the problem is UNSAT. The set of decisions responsible by the conflict are grouped
and complemented to form a conflict clause that is added in a database to forbid such sets
of assignments in the future. This process is called learning.

Some of the most popular SAT-solvers that implement these techniques are Chaff [14],
GRASP [13], MiniSAT [7], SATO [17] and Satz [12].

2.2 Parallel SAT-solvers

The demand for more computational power led to the creation of new computer architectures
and paradigms composed by multiple machines connected by a network to act as one, like
clusters and grids. Another recent technology with potential impact on SAT solvers involves
processors with multiple cores, but we will refrain from discussing this topic in this paper.
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To ensure that programs make full use of the available computing power provided by
distributed architectures composed of multiple processing units, most software applications
must be first reengineered to partition either its data or its functionality, or both. Then
the so-modified application must be coded using some special programming language and
libraries to control communication and synchronization between the machines/processors.

Since the last decade there have been several implementations of SAT-solvers to be
executed in clusters and grids, using distinct technologies. Some of them are GrADSAT [4],
NAGSAT [8], PSATO [18] and //Satz [10]. For the most part, all these solvers have a
master/slave (or Task Farm) architecture where a master task sends out work and collects
the results, while the clients run a sequential SAT-solver. They also split the search space,
using different methods, and analyze each subspace in parallel, in separate clients. Their
execution is time constrained and all of them are, to some extent, fault tolerant.

GrADSAT is a solver that is based on Chaff and runs over a grid of widely distributed
computers that are dynamically acquired and released. Each client in the GrADSAT envi-
ronment searches in some specific subspace, but learnt clauses are shared between clients
(immediately after being generated), a characteristic that can improve performance as the
sharing of clauses can potentially improve search space prunning, albeit at the cost of addi-
tional communication. PSATO, based on solver SATO, runs in clusters and it is implemented
in C and uses the parallel language P4 [1] to manage concurrency and communication.
PSATO can save checkpoints of the search allowing a temporary suspension of the program.
Clients in PSATO also search in non-overlapping subspaces of the original problem. //SATz
is based on SATz, also run in clusters, is implemented in C, communicates through RPC
(Remote Procedure Call) and makes load balance using the work stealing technique, which
amounts to repartitioning of subspaces that have been found to be too large for a single
client to search in. PaSAT uses the DOTS parallel programing toolkit [3] to build a parallel
SAT solver in C++ that is able to partition the search space dynamically and share learnt
clauses among the parallel tasks (lemma exchange). However, this technique was imple-
mented using shared memory which limits its usage to multiprocessors machines. More
recently, the same authors have extended this solver for distributed environment systems,
where mobile agents were used for lemma exchange between different nodes [2]. NAGSAT
exhibits a slightly different behavior as it uses a technique called nagging, where the master
task runs a sequential solver while the clients explore subspaces of the search space and
transmit to the master important informations. However, unlike all the other implemen-
tations, the master task is the sole responsible for the final decision and is free to use the
information provided by the clients or not. NAGSAT runs on large local networks of het-
erogeneous desktops and it is aimed at solving 3Sat problems. It was written in C and
communicates through BSD sockets.

An important thing to point out is that all these programs were developed in or assuming
different parallel environments, therefore, the results achieved were computed under non-
comparable conditions and using distinct sets of benchmarks. However, all the parallel
solvers achieved some speedup relatively to the sequential program that each one was based
on. In general the number of instances in which a super-linear speedup is achieved reduces
when the number of used processors increase (probably due to the communication overhead).
For the GrADSAT solver the speedup is sub-linear in most instances but, due to the parallel
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implementation, solutions have, in some cases, been found for a set of instances that were
never solved before.

2.3 Choices and features for PMSat

Therefore PMSat shares some common characteristics with other parallel versions of SAT
solvers, such as GrADSAT, PSATO and //SATz. For once it is based on partitioning of
the domain or search space, an assignment undertaken by the master, which controls the
scheduling of the clients and distributes the various tasks between them. The individual
clients then perform the actual search corresponding to the task given. Unlike other solvers,
however, more than one partitioning heuristic is available for the user as we will see in the
following Section. Like GrADSAT and PaSAT sharing of learnt clauses is allowed, albeit using
a slightly different mechanism and heuristics (discussed in Section 4). Conflict learning is
also used to prune the outstanding tasks and potentially to stop running clients whose
search space has been proven irrelevant.

PMSat was written in C++ and uses MPI (Message Passing Interface) technology to
control its execution in several computing nodes and the communication between them. MPI
was chosen because, as mentioned previously, it has become industry’s de-facto standard
with versions for several technological platforms, providing a high degree of portability.
Usage of MPI and the resulting portability and generality is one of the main features of
PMSat. PMSat was also implemented based on a Task Farm architecture. The developed
solver should be executed in a local dedicated cluster to maximize data input/output and
communication speed, although it can be run on any computational platform that supports
MPI. Each run of PMSat creates a fixed number of clients (called workers) and indicates to
them parts of the search space to be explored, but without time constraints and assuming
the absence of infrastructure faults. These last two features allowed a simpler design and a
reduction in the complexity of the implementation.

In terms of inner SAT solver, we chose MiniSAT to be PMSat’s core solver because it
is efficient and well documented. However, its most important feature, common to some
other solvers, that influenced our choice is the possibility to give to the solver a particular
set of literals to be assumed as true and search for satisfiability based on that information.
This is the procedure used by the master to instruct the clients on the subdomain to work
in. When that search ends, the assumptions can be undone and the solver returns to a
usable state, even when it returns UNSAT (being the result interpreted as UNSAT under
assumptions). In that case the solver may fill a vector of conflicts with some of the assumed
literals responsible for the contradiction. The database of learnt clauses is preserved by the
solver between different runs. These features enable the possibility to share learnt clauses,
prune the search space and reuse the solver without reloading the formula. In this work,
different modes for search space partitioning were developed and tested, providing greater
flexibility.

3. Parallel Algorithm

This section presents the partition, architecture and work flow of the parallel algorithm, as
well as the details of some interesting features.
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3.1 Algorithm partition

There are two basic ways in which modifications can be brought to an algorithm in order
to develop a parallel version. Both of these involve a partitioning procedure: functional
partition or domain partition.

A functional partition consists in splitting the algorithm in independent procedures
that can be executed in parallel. In essence, the parallel version is in fact a new algorithm
although it may share some similarity with the original one. A domain partition is a
procedure aimed at partitioning the dataset involved in the algorithm execution, typically
in order to process concurrently independent sets of input, internal or output data. In the
case of SAT solvers, a partition of the problem cannot easily be made at the functional level
due to the architecture of the DPLL algorithm (Figure 1). Its correct execution depends
on the coherence in the data structures, that must be sequentially updated by the various
functions.

Domain partitioning is however, conceptually much easier to perform. Essentially a SAT
solver searches through a combinational space for an assignment that satisfies all clauses.
Once such an assignment is determined, the search is halted and a result of SAT is returned.
If no such assignment exist, the solver implicitly tries all combinations finally returning a
result of UNSAT (in practice, conflict detection and clause learning implies that this search
is never exhaustive). The multiple combinations of assignments that compose the search
can be organized as a binary tree (assignments tree) where all branches and subtrees are
independent of each other, allowing their exploration in parallel. The strategy used makes
assumptions (sets of literals assumed as true) over a predefined, small set, of variables and
searches for satisfiability on subtrees of the assignments tree using a standard solver. Note
that, in the case of MiniSAT, there is no need to change the underlying solver because,
as was said before, it can receive a vector with assumptions and determine whether the
problem is SAT or UNSAT under those assumptions. In other words, it can be directed to
a specific subspace of the original space. Once the search is finished, control returns to the
main solver, the assumptions are undone and the solver is ready to be reused. By making
this type of domain/space partition the search space can be split into subtrees which can
be searched concurrently.

3.2 Architecture and work flow

The architectural structure chosen for PMSat is the so-called Task Farm approach, with
a master and several workers, as presented in Figure 2. Each worker communicates only
with the master and receives from him a set of assumptions that need to be tested for
satisfiability. This test is performed by the worker which explores the subspace resulting
from those assumptions and returns back a result. A single executable file is shared by
master and workers and the work flow is described as follows:

1. upon starting, the program detects whether it is the master or a worker and executes
the correspondent code;

2. the master partitions the search space according to the mode of operation configured;
in practice this corresponds to generating the set of assumptions which are then sent
to the workers; after this, the master waits for results from the workers;
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Figure 2. Architecture of the program

3. the workers use the assumptions to search for satisfiability, essentially working in the
implicitly defined corresponding subspace;

4. if a worker returns UNSAT, it may send a vector with a set of learnt clauses and/or a
vector of conflicts with some (or all) of the assumed literals responsible for that result;
after this, the worker waits for further instructions from the master;

5. the master, after receiving the vector of conflicts, use it to remove all untested as-
sumptions that will result in UNSAT;

6. the master, upon receiving an UNSAT result, and after updating the remaining set of
assumptions, sends another assumption, possibly with some extra learnt clauses, to
the idle worker;

7. when a worker returns SAT, it may optionally send back the solution found;

8. when the master receives SAT or all the assumptions are reported as UNSAT, it ends
the execution (if necessary stopping all workers still active).

When a worker determines an UNSAT result, it must signal this condition to the master
but also return the corresponding vector of conflicts. Since the size of this vector is unknown,
one possibility would be to send an initial message with the UNSAT result and the size of
the vector which would subsequently be transmitted. However this implies always sending
two message, which introduces unnecessary delay. Instead we chose to include the vector
in the result message, perhaps breaking the message into multiple messages, but only when
necessary. In this case the vector of conflicts is sent to the master directly in the result
message. This message is composed of an array of fixed, programmable, size. To enable the
communication of vectors with large size, multiple messages can be sent back and a protocol
has been setup to break a vector into several arrays that can be sent in the various messages
and rebuilt by the master. In our tests we used an array size of twenty slots, which proved
to be enough for most of the vectors tested, hence ensuring that just one message will be
sent back to the master in most cases.

The pseudocode of the master’s management function is shown in Figure 3. It is com-
posed by an initialization stage where all assumptions are created and one is sent to each
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test4SAT(){

generate all assumptions;

send one assumption for each worker;

do{

receive a result from a worker;

if(result is SAT) return SAT;

if(sharing learnt clauses)

receive learnt clauses and add them into the database;

if(conflicts enabled)

erase the assumptions containing the conflicts;

if(more assumptions to try){

if(sharing learnt clauses)

retrieve from database a set of learnt clauses and send it;

send another assumption;

}

}while(not tested all assumptions);

return UNSAT;

}

Figure 3. Master’s management function

worker. Typically more assumptions are created than the number of available workers, in
order to account for workers that finish very quickly and can receive additional assump-
tions. After sending assumptions to all workers, the program enters into a loop waiting for
the answers from any of the workers and sending more assumptions to those that report
UNSAT. Inside this loop, the master may also receive learnt clauses that are stored and
sent to other workers, or remove assumptions that contain conflicts. The loop ends when a
solution is found or all the assumptions are reported as UNSAT. The complete algorithm,
with the master and the worker code, is shown in Figure 4. After a common initialization
to read the input formula, the program differentiates itself into the master code and the
worker code. The master runs the function previously described to manage the workers,
while these run the solver trying to find a solution constrained by the assumption received.
The workers may also send and receive learnt clauses. There is an additional option to
execute the sequential MiniSAT in one machine, without parallelism, which is relevant only
for comparisons purposes.

4. PMSat implementation choices

In this section we describe in detail some procedures and features of the application such as:
variables selection, assumptions generation, assumptions pruning, sharing of learnt clauses
and automatic settings. The variables selection and assumptions generation is directly
related to how the search state is partitioned into subspaces or tasks that the various
workers will process in turn. As a result of the search in some subspace, a conflict may
be detected that will allow prunning of outstanding assumptions and thus elimination of
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main(){

Solver S;

parse parameters;

read input file into S;

automatically calculate the missing parameters;

if(local mode) S.solve() and output result;

else{ //parallel mode

if(master){ //master code

choose the most popular variables;

result = test4SAT();

output result;

if(should write the solution)

receive and write the solution;

abort computation;

} //end master

else{ //worker code

while(true){

receive assumption;

if(sharing learnt clauses){

receive a set of learnt clauses;

insert the learnt clauses into S;

}

result = S.solve(assumptions);

if(result is SAT){

send result;

if(should write the solution) send the solution;

}

if(sharing learnt clauses)

get a set of learnt clauses from the solver and send them;

if(removing all learnt clauses)

delete all learnt clauses from S;

if(conflicts enabled)

get the set of conflicts and insert them in the result;

send result;

} //while

} //end else worker

} //end else parallel

}

Figure 4. Program’s main with master and worker code
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irrelevant portions of the search space. Finally, learnt clauses may, in some settings help
speed up the search process itself.

4.1 Variables selection

As selection criteria for sets of variables to use in the assumptions we considered two options:
we either choose the variables that occur more frequently or the variables that occur in
bigger clauses. The goal of the first option is that by choosing the more frequent variables,
our assumptions will simplify more clauses and thus, hopefully, reduce the problem to a
greater extent. The second option is aimed at simplifying the biggest clauses. The number
of occurrences of each literal is also registered because it is used to create the assumptions.
In the following we will refer to the variables with more occurrences, and to their literals,
as “the most popular”.

4.2 Assumptions generation

Given a set of selected variables, specific values are assigned to them and the resulting
search subspace is ready to be analyzed by a worker. This assignment procedure is termed
the assumptions generation process. The assumptions generation process is akin to the
generation of the guiding path, a concept introduced in PSATO [18]. However here the master
generates at once all the paths associated with all search spaces to be used. Considering
the selected variables, there is more than one way to generate assumptions and to explore
the assignments tree. It was decided to allow different assumptions generation and work
assignment methods. This provides a freedom of choice to the user and the possibility to
compare their performance.

We propose two major methods to create assumptions, subdividing each one in two
search modes. Note that irrespective of the method chosen for breaking up the assumptions
tree and the search mode, all possible combinations of the selected variables are, if necessary,
investigated.

• Equal : all assumptions have the same number of literals.

1. Random: assumptions are chosen randomly.

2. Sequential : assumptions are chosen in a sequential way.

• Progressive: the number of literals in the assumptions changes.

1. Few first : we start from assumptions with few literals and proceed to those with
many literals.

2. Many first : we start from assumptions with many literals and proceed to those
with few literals.

In the following subsections we shall analyze and describe each method in more detail. We
will assume that the k most popular variables were already chosen and we will refer to them
just as the k variables for which an assignment is warranted.
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4.2.1 Equal method

In the Equal method each assumption is a branch of the assignments tree over the k vari-
ables. All possible combinations are generated and tested, making for a total of 2k different
assumptions.

Example 4.1. If the set of most popular variables is {ϕ,ψ}, the four assumptions to test
are: {¬ϕ,¬ψ}, {¬ϕ,ψ}, {ϕ,¬ψ} and {ϕ,ψ}, arranged in the following tree:
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Note that the union of these four assumptions constitutes the whole search space.

The two modes refer to the testing sequence of the assumptions. In Random mode the
assumptions are chosen randomly to be tested.

Example 4.2. Choosing randomly the branches:
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In Sequential mode the assumptions are chosen sequentially, starting by the one with
the most popular literals, traversing the assignments tree from left to right.

Example 4.3. Sequential mode, having {¬ϕ,ψ} as the most popular literals, where ¬ϕ has
more occurrences than ψ. Thus, {¬ϕ,ψ} is chosen first and then assignments are made left
to right in the order shown (think of the leaf nodes shown as having codes 0, 1, 2, 3 and 4.
The first leaf is defined by the most popular sequence of literals (in this case leaf 1). From
there on leafs are picked in natural order (2, 3, and then 0).
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4.2.2 Progressive method

The Progressive method is a different approach to explore the assignments tree. While in
Equal method all the explored subtrees have the same size and the number of assumptions
to test grows exponentially when the amount of their literals increase, in the Progressive
method the intention is to make the number of assumptions grow polynomially as their liter-
als increase but having a variation on the size of the searched subtrees. The main objective
is to provide a way to have assumptions with many literals, without having an exponen-
tial growth of combinations, to explore more deeply the assignments tree. Consequently,
a polynomial number of clients is sufficient to generate a response to the underlying SAT
problem. For k variables this method will create 2 × k assumptions. This is accomplished
by generating the assumptions using the following algorithm:

Proposition 4.4. The progressive algorithm provides a set of 2 × k assumptions, with an
amount of literals ranging from 2 to k, that covers the entire assignments tree.

This is done in the following manner:

1. Dispose the most popular literals in a list indexed from 1 to k, with increasing popu-
larity;

2. for each i− th literal from the list, 1 < i ≤ k, create an assumption containing:

(a) all the previous j − th literals, 1 ≤ j < i;

(b) the complement of the i− th literal;

3. make an assumption with all the k literals;

4. for each of the previous assumptions, make new ones by complementing their first
literal.

Proof: we will prove that steps 2 and 3 of the algorithm generate assumptions that
cover exactly half of the assignments tree and that phase 4 generates the assumptions of
the other half.

Proof by induction on the number of literals k in the list.

Base: k = 1

1. the list has one literal: {ϕ1}.

2. the cycle does not create any assumption because there is no 2nd literal.

3. creates the assumption h1 = {ϕ1}. h1 covers one branch (half) of the assignments
tree for ϕ1.

4. creates the assumption h2 = {¬ϕ1} that covers the other branch of the tree.
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The induction hypothesis asserts that for k = n, with a list of n literals {ϕ1, . . . , ϕn},
the steps 2 and 3 generate the assumptions h1, . . .hn that cover half of the assignments
tree. Complementing the first literal (ϕ1) that appears in all h1, . . . , hn by construction, we
cover the other half of the tree.

Step: k = n+ 1

1. the list has n+ 1 literals {ϕ1, . . . , ϕn+1}.

2. generates the assumptions {h′1, h
′
2, . . . , h

′
n} where h′1 = h1, h

′
2 = h2, . . . , h′n−1 = hn−1

by construction and h′n = {ϕ1, . . . , ϕn,¬ϕn+1} = hn ∪ {¬ϕn+1}.

3. creates the assumption h′n+1 = {ϕ1, . . . , ϕn, ϕn+1} = hn ∪ {ϕn+1}.
The assumptions h′n and h′n+1 extend the assumption hn that covered the longest
branch of that half of the tree by including the two combinations for ϕn+1. For
induction hypothesis as h1, . . . , hn cover half of the assignments tree then h′1, . . . , h

′
n+1

also cover half of the assignments tree because h′n and h′n+1 extend the longest branch
hn.

4. generating n+1 assumptions by complementing the literal ϕ1 of the previous assump-
tions, the other half of the tree is also covered.

QED

Example 4.5. Consider the most popular literals ϕ, ψ and γ. Applying the steps of the
method:

1. Get the list of popular literals {ϕ,ψ, γ};

2. the assumption for i = 2 is {ϕ,¬ψ} and for i = 3 is {ϕ,ψ,¬γ};

3. create the assumption {ϕ,ψ, γ};

4. create the assumptions {¬ϕ,¬ψ}, {¬ϕ,ψ,¬γ} and {¬ϕ,ψ, γ}.

Six assumptions were created:

1. {ϕ,¬ψ};

2. {ϕ,ψ,¬γ};

3. {ϕ,ψ, γ};

4. {¬ϕ,¬ψ};

5. {¬ϕ,ψ,¬γ};

6. {¬ϕ,ψ, γ}.
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As we can see, the assumptions (with the correspondent number under the branches)
cover all the assignments tree:
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The first and fourth assumptions explore a larger subtree.

The two search modes implemented allow to decide whether to start from the assump-
tions with two literals (Few first) or from those with k literals (Many first).

4.3 Assumptions pruning

Suppose a given worker is searching on some subspace of the variables given the assumptions
assumed and it finds a contradiction under the those assumptions. In this case the solver
may fill the vector of conflicts with a subset (or the entire set) of the assumed literals
responsible for that contradiction. They are added to the result message sent to the master,
that proceeds to erase all the assumptions not yet tested that contain them. The objective
is to invalidate branches from the search tree even without evaluating them in order to save
time. The effectiveness of this procedure depends on the quality and pervasiveness of the
conflict learned, which is unfortunately problem-dependent.

4.4 Learnt clauses

We implemented a mechanism to optionally share learnt clauses between the workers. If
this option is enabled, each worker sends to the master a set of learnt clauses upon finishing
its task, i.e., after finishing its search. A balance must be striken here since on one hand,
sharing of learnt clauses implies communication, which is costly, while on the other hand it
may help prune the search space, avoiding the scheduling of unnecessary future tasks. In
our approach, each set may have a maximum number of clauses, each one with a limited size
(amount of literals). These restrictions put a threshold on the size of the message sent, and
limits the size of the clauses database (there may exist clauses with hundreds of literals).

When the sharing of learnt clauses is active (by default it is off) the user can control
the “sharing intensity”. Two additional options are available for this purpose: one limits,
for each worker, the maximum number of clauses to be shared (default value is 50), the
other limits the maximum allowed size, in number of literals, of shared clauses (default
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value is 20). These options impact directly the size of the database of learnt clauses and
the communication overhead between master and workers. The defined default values seem
to result in an adequate balance for the set of benchmarks we used.

The selection of the learnt clauses for sharing is made after sorting them by activity. Half
of the most active clauses are analyzed (to share only the most active ones) and only those
with size smaller than the maximum allowed are selected. Note that it is counterproductive
to send a clause that contains many variables. Those lead to smaller cuts in the search
space and are also less likely to occur in other subspaces.

The master has a database for each worker where it stores the most recent set of learnt
clauses sent by each worker, up to the maximum defined value. The idea is to always
have the most recent ones at hand, so the old ones are replaced by new ones that arrive.
When the master has to send a set of learnt clauses to a worker he chooses one set that
has not been sent to that worker yet. So the receiver will always get different and updated
information. Although there is an activity associated to each learnt clause, when a worker
sends a set of learnt clauses to the master their activities are not included. Each worker has
the responsibility for assigning activities to that set of clauses it receives in order to respect
the scale of values of other existing learnt clauses that it kept locally. The activities of the
new learnt clauses are set to the maximum value of those stored in the worker to give them
some relevance and to avoid being removed in the next solver’s learnts cleanup.

Besides sharing, the solver, by default, saves the learnt clauses on each worker, but can
also remove them all after each execution. Saving them is useful because they guide the
next search.

4.5 Automatic settings

When the search mode or the number of variables to assume are not specified, they are de-
termined automatically by the program, based on the number of workers, the assumptions-
CPUs ratio (acr) and the search mode. The acr (which has a default value of 3, but may
be redefined by the user) is a measure for the granularity that we want in the division of
the search space and indicates the intended relation between the amount of assumptions
and workers. Given w workers and an acr, we have a total of acr×w assumptions that are
used to determine the amount V of variables for the Progressive and Equal methods, by
the following formulas:

Vprogressive = ⌈w × acr/2⌉ (1)

Vequal = ⌈log2 (w × acr)⌉ (2)

In the Progressive method the number of assumptions is 2 × Vprogressive ≈ acr × w.

In the Equal method the number of assumptions is 2Vequal = 2⌈log2
(acr×w)⌉ ≈ acr × w.
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When only the number of variables is given, the search mode is set to Random if
2V ≤ acr × w, otherwise it is set to Many first. When none of the parameters are given,
the search mode is set to Random and V = Vequal.

5. Results

In this section we compare the performance (computation time) taken by the sequential
MiniSAT (version 1.14) and our solver, PMSat1., on several benchmarks instances.

5.1 Performance metrics

The sequential MiniSAT measures computation time as the CPU time from the beginning
to the end of the execution. However, measuring the computation time in a distributed
environment is a difficult task because several computational units (clients) are working in
parallel and some communication is involved. Therefore, an investigation was started to
determine a fair method for measuring the computation time in a distributed environment.
As result, and after running some tests, we decided to measure the computation time of
PMSat as the CPU time spent by the most occupied worker plus the CPU time spent by the
master attending its requests, initializing and finalizing. All times presented in this section
are in seconds.

Regarding the performance measures related with time, we present the relative speedup,
relative efficiency and serial fraction. These values are calculated using the following for-
mulas:

Notation 5.1. We will denote T1 as the execution time of the sequential program, Tp as
the execution time of the parallel program, speedup as sp, efficiency as ep and serial fraction
as fp on p processors, defined respectively as

sp =
T1

Tp

(3)

ep =
sp

p
=

T1

Tp × p
(4)

fp =

1
sp

− 1
p

1 − 1
p

(5)

Relative speedup (sp) can be classified as sub-linear (sp < p), linear (sp = p) or super-linear
(sp > p). Perhaps contrary to expected behavior, super-linear behavior can be seen and is
in fact not that unusual. This happens because by breaking the search space into tasks that
are searched independently, if a solution exists in one of these spaces, the potential speedup
is limited by how quickly that task is initiated. If it is initiated quickly, then a solution is
rapidly encountered and the process stopped, possibly much faster that what would happen

1. PMSat can be downloaded from http://algos.inesc-id.pt/software/pmsat
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Table 1. Benchmark instances

Instance Abbreviation Solution Variables Clauses

fpga10 11 uns rcr.cnf fpga10 11 UNSAT 220 1122

fpga10 12 uns rcr.cnf fpga10 12 UNSAT 240 1344

fpga10 13 uns rcr.cnf fpga10 13 UNSAT 260 1586

hole11.cnf hole11 UNSAT 132 738

mod2-3cage-unsat-9-11.cnf mod2-9-11 UNSAT 87 232

mod2-3cage-unsat-9-4.cnf mod2-9-4 UNSAT 87 232

unif-r4.cnf unif-r4 UNSAT 400 1700

frb40-19-1.cnf frb40-19-1 SAT 760 43780

frb40-19-2.cnf frb40-19-2 SAT 760 43780

frb40-19-3.cnf frb40-19-3 SAT 760 43780

frb40-19-4.cnf frb40-19-4 SAT 760 43780

frb40-19-5.cnf frb40-19-5 SAT 760 43780

mod2-3g14-sat.cnf mod2-3g14 SAT 192 768

mod2c-rand3bip-sat-150-11.cnf mod2c-11 SAT 212 1520

mod2c-rand3bip-sat-150-15.cnf mod2c-15 SAT 213 1528

sat2.cnf sat2 SAT 283 1358

unif-r5.cnf unif-r5 SAT 251 323

vmpc 21.renamed-as.sat05-1923.cnf vmpc 21.rn SAT 441 45339

vmpc 23.renamed-as.sat05-1927.cnf vmpc 23.rn SAT 529 59685

vmpc 25.renamed-as.sat05-1913.cnf vmpc 25.rn SAT 625 76775

vmpc 25.shuffled-as.sat05-1945.cnf vmpc 25.sf SAT 625 76775

vmpc 26.renamed-as.sat05-1914.cnf vmpc 26.rn SAT 676 86424

vmpc 26.shuffled-as.sat05-1946.cnf vmpc 26.sf SAT 676 86424

vmpc 27.renamed-as.sat05-1915.cnf vmpc 27.rn SAT 729 96849

vmpc 27.shuffled-as.sat05-1947.cnf vmpc 27.sf SAT 729 96849

in the sequential code, where perhaps, that space could take a long time to be investigated.
This is quite likely to occur in SAT problems, in our experience, and less likely, although not
impossible, in UNSAT problems. Efficiency (ep)is the relative speedup achieved divided by
the number of processors. Note that super-linear speedups occurs when ep > 1. The serial
fraction (fp) [11] determines the fraction of the program that is spent performing sequential
computing. When it is negative, it indicates that a super-linear speedup has occurred.

5.2 Benchmarks and test methodology

The 25 instances used as benchmarks, their abbreviated name, solution type, number of
variables and clauses are presented in Table 1.

The UNSAT instances were separated from the SAT. We selected 7 UNSAT instances
and 18 SAT instances from benchmarks available in the Internet and from the SAT 2005
Competition [15].
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The tests were made in the Grid Infrastructure available at INESC–ID. This grid has 11
available computers with an homogeneous architecture consisting of Pentium 4 processors
at 3.2 GHz, 1 GB of RAM, Linux operating system and MPICH 1.2.6. All computers have
access to the same hard drive shared via the Network File System (NFS).

To measure the performance of PMSat and gauge influence of its two specific options
(removal of assumptions with conflicts and sharing of learnt clauses), two sets of tests were
defined according to the number of selected variables:

1. Fixed number of selected variables:

• assuming a selection of 6 variables for assumptions generation;

• number of workers varied between 2 and 10;

• for all search modes (Random, Sequential, Few first, Many first);

• three settings, respectively, (a) with no specific options (i.e. options disabled),
(b) allowing the removal of assumptions with conflicts and (c) the capability of
sharing learnt clauses.

• all other parameters assuming their default values;

2. Variable number of selected variables:

• automatically calculating the number of variables to assume (according to (1)
and (2));

• number of workers and assumptions-CPUs ratio with equal values between 2 to
10 (2 workers, acr = 2; 3 workers, acr = 3; . . . );

• for all search modes (Random, Sequential, Few first, Many first);

• without specific options selected (i.e. no removal of assumptions due to detected
conflicts and no sharing of learnt clauses).

• all other parameters assuming their default values;

The first set of tests enables a comparison of the time spent searching with the various
search modes, considering separately the removal of assumptions with conflicts, the sharing
of learnt clauses or with both options disabled (no options). We decided to select a set
of 6 variables for generating the assumptions because they provide an adequate amount
of assumptions generated by the search modes (in other words, they lead to a number of
partitions of the search space that is sufficient to keep all workers busy). This is a very
empiric choice and probably very dependent on the instances chosen. However, from the
experiences we made, there does not seem to exist a particular value that is more accurate
than others.

The second set of tests enables the determination of the impact of the number of as-
sumptions to solve in the performance of the SAT solver. Note that, in the proposed setup,
the number of assumptions grows quadratically with the number of workers (since we have
chosen to keep the number of workers and the acr equal).

We could have tested the multiple combinations of options, but the interactions between
them would not allow us to determine which one has a major influence on the result. So
we just made tests with one option enabled each time.
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Table 2. Average time taken by MiniSAT on all, just SAT and just UNSAT instances

Instances Average solving time

All instances 839.723

Just SAT instances 916.618

Just UNSAT instances 641.994

5.3 Performance tests

In this section we compare the performance between MiniSAT and PMSat. First of all, we
present the average times that MiniSAT took to solve the instances. Then, the results from
the two sets of tests are presented. These results are organized in tables with the average,
best and worst times determined from the total amount of measurements made.

The reader should be aware that some functions inside MiniSAT are purposedly built
to exhibit random behavior in order to unbias certain choices that the solver is required
to make. The end effect of that behavior, however, is that each time an instance is solved
the time spent may differ by a couple of seconds. These small differences are nevertheless
generally irrelevant for the type of results we seek.

Comparing our results with other developed parallel SAT solvers (such as the ones
mentioned in Section 2.2) is difficult and could be misleading. This is mainly because
the set of heterogeneous distributed environments used by each solver and the selected
benchmarks are very different, that making a fair comparison is impossible. But, in general,
we observed that our solver is able to achieve a higher percentage of super-linear speedups,
when compared with the results presented by the other solvers. This may result from the
lower communication overhead introduced by our parallel implementation of the PMSat
solver.

5.3.1 Sequential times

Table 2 presents the average time taken by MiniSAT to solve all, just the SAT and just the
UNSAT instances. The time to solve each instance is displayed in the tables of best and
worst times presented in the following subsections.

5.3.2 Performance tests with 6 variables

This section presents the average, best and worst times that PMSat took to solve all in-
stances under the conditions of the first set of tests.

The tables with average times for all instances (Table 3), just SAT instances (Table 4)
and just UNSAT instances (Table 5) present the average time spent by PMSat to solve them
with 3, 6 and 9 workers.

The following information is shown in tables of average times: the number of workers
used (#W), the selected search mode (Mode), and the average times spent with the
following settings: with options disabled (i.e. without removing assumptions with conflicts
or sharing learnt clauses) (Avg-no-opts), allowing removal of assumptions with conflicts
(Avg-confs) and allowing sharing learnt clauses (Avg-learnts).
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Table 3. Average time by PMSat of all instances for the first set of tests

#W Modes Avg-no-opts Avg-confs Avg-learnts

3 Few first 583.171 583.062 354.246

3 Many first 515.157 515.325 507.609

3 Random 233.955 325.698 402.908

3 Sequential 491.947 481.000 487.951

6 Few first 263.225 248.453 297.568

6 Many first 487.311 487.295 490.225

6 Random 442.357 435.161 462.267

6 Sequential 455.172 456.049 452.549

9 Few first 204.162 203.460 202.118

9 Many first 494.989 494.613 503.160

9 Random 437.607 404.607 395.692

9 Sequential 440.508 442.092 442.603

Table 4. Average time by PMSat of SAT instances for the first set of tests

#W Modes Avg-no-opts Avg-confs Avg-learnts

3 Few first 667.143 667.597 344.804

3 Many first 570.140 569.682 567.213

3 Random 232.513 378.467 470.377

3 Sequential 593.173 589.025 587.246

6 Few first 234.601 218.502 280.733

6 Many first 558.833 558.679 559.042

6 Random 549.986 535.787 580.246

6 Sequential 570.729 569.105 564.815

9 Few first 148.731 148.865 149.395

9 Many first 556.352 555.212 556.074

9 Random 541.893 505.616 497.348

9 Sequential 562.493 561.593 565.651

Comparing the average time per instance taken by PMSat and MiniSAT presented in
Table 3 and Table 2 respectively, we notice that it decreased from more than 800 seconds
taken by the sequential solver to about 500 seconds taken by PMSat. We can also see
that there were registered few gains due to the sharing of learnt clauses or the removal
of assumptions with conflicts. To some extent this could be attributed to the cost of
communication incurred with transmitting the associated information, which may balance
out the potential benefit of using such information.

Table 4 presents the average time per SAT instance varying between 150 and 650 seconds,
smaller than the 916 seconds taken by MiniSAT in Table 2. The search mode Few first
achieved the best average times with values near 250 seconds for 6 workers and 150 for 9
workers.

90



PMSat: a parallel version of MiniSAT

Table 5. Average time by PMSat of UNSAT instances for the first set of tests

#W Modes Avg-no-opts Avg-confs Avg-learnts

3 Few first 367.242 365.687 378.527

3 Many first 373.769 375.551 354.343

3 Random 237.662 190.008 229.415

3 Sequential 231.650 203.219 232.620

6 Few first 336.829 325.469 340.857

6 Many first 303.398 303.737 313.267

6 Random 165.595 176.409 158.891

6 Sequential 158.026 165.335 163.864

9 Few first 346.699 343.846 337.689

9 Many first 337.199 338.787 367.097

9 Random 169.442 144.868 134.292

9 Sequential 126.830 134.803 126.195

Results in Table 5 show that the average time per UNSAT instance varied between 125
and 370 seconds, clearly smaller than the 640 seconds taken by MiniSAT, in Table 2. Once
again, the best average time (126 seconds) was achieved with 9 workers, but this time with
the Sequential search mode.

The tables with the best and worst times present for each instance the configuration
that made PMSat spend more time to solve it.

The tables of best and worst times display the following information: instance name
(Instance), time spent by the sequential MiniSAT (MiniSAT), time of the parallel algo-
rithm (PMSat), search mode (Mode), number of workers (#W), speedup (Spd.), effi-
ciency (Eff.) and serial fraction (S. F.).

Table 6 shows the best performances achieved by PMSat for the first set of tests (6 vari-
ables) without any defined options (without removing assumptions with conflicts or sharing
learnt clauses). All but one of the runtimes were smaller than those taken by MiniSAT
and about half or more corresponded to super-linear speedups, specially visible in the SAT
instances. The modes with more occurrences were Random and Few first.

However, PMSat did not always solve the problems faster, as indicated in Table 7 (the
worst case performances). In some situations PMSat took more time than MiniSAT. Most
of the worst times were registered with less than 4 workers due to the long computations
that occupied them excessively. This means that using many workers is typically a good
option since it tends to avoid worst case settings.

5.3.3 Performance tests with different number of variables

This section presents the average, best and worst times that PMSat took to solve all in-
stances under the conditions of the second set of tests. These times are compared with
those achieved by MiniSAT.

Many of the best performances were obtained in this second set of tests.
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Table 6. PMSat’s best performances for the first set of tests

Sol Instance MiniSAT PMSat Mode #W Spd. Eff. S. F.

fpga10 11 44.999 31.563 Few first 8 1.426 0.178 0.659
fpga10 12 158.474 71.475 Many first 9 2.217 0.246 0.382
fpga10 13 161.586 165.130 Random 5 0.979 0.196 1.027

hole11 723.157 218.260 Few first 10 3.313 0.331 0.224

U
N

S
A

T

mod2-9-11 78.573 29.017 Many first 9 2.708 0.301 0.290
mod2-9-4 80.753 28.197 Random 9 2.864 0.318 0.268
unif-r4 3246.920 198.606 Random 10 16.349 1.635 -0.043

frb40-19-1 287.402 15.303 Random 6 18.781 3.130 -0.136
frb40-19-2 540.394 0.233 Random 9 2319.228 257.692 -0.125
frb40-19-3 6340.410 8.459 Few first 8 749.589 93.699 -0.141
frb40-19-4 901.448 236.657 Random 3 3.809 1.270 -0.106
frb40-19-5 4528.720 43.460 Random 5 104.205 20.841 -0.238
mod2-3g14 877.347 37.102 Many first 6 23.647 3.941 -0.149
mod2c-11 75.333 4.713 Few first 3 15.983 5.328 -0.406
mod2c-15 26.554 0.996 Random 7 26.659 3.808 -0.123

S
A

T

sat2 66.552 6.372 Random 10 10.444 1.044 -0.005
unif-r5 360.687 1.423 Random 10 253.454 25.345 -0.107

vmpc 21.rn 51.191 0.375 Random 10 136.505 13.651 -0.103
vmpc 23.rn 151.893 5.560 Few first 8 27.317 3.415 -0.101
vmpc 25.rn 472.618 0.732 Random 10 645.627 64.563 -0.109
vmpc 25.sf 25.826 5.107 Random 6 5.057 0.843 0.037
vmpc 26.rn 142.121 116.604 Few first 5 1.219 0.244 0.776
vmpc 26.sf 301.119 11.303 Few first 10 26.641 2.664 -0.069
vmpc 27.rn 896.080 57.139 Random 3 15.683 5.228 -0.404
vmpc 27.sf 453.440 0.465 Few first 5 975.123 195.025 -0.249

In first place we present Table 8 with the average times per instance using 3, 6 and 9
workers respectively, for all, just the SAT and just the UNSAT instances.

The following information is shown in the Table 8: the number of workers used (#W),
the selected search mode (Mode) and the average times spent for all (All instances), just
SAT (SAT instances) and just UNSAT instances (UNSAT instances).

Once again the times spent by PMSat were smaller than the ones spent by MiniSAT.
For all instances, the best average time taken by the parallel solver was 10 times inferior
when were used 9 workers and the search mode Few first. We also notice that the search
modes from the Progressive method had average times smaller than the ones from the Equal
method.

Now we present the tables with the best and worst times achieved by the second set of
tests.

The tables of best and worst times display the following information: instance name
(Instance), time spent by the sequential MiniSAT (MiniSAT), time of PMSat (PMSat),
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Table 7. PMSat’s worst performances for the first set of tests

Sol Instance MiniSAT PMSat Mode #W Spd. Eff. S. F.

fpga10 11 44.999 95.217 Sequential 2 0.473 0.236 3.232
fpga10 12 158.474 221.705 Random 3 0.715 0.238 1.598
fpga10 13 161.586 415.011 Sequential 3 0.389 0.130 3.353

hole11 723.157 432.901 Few first 8 1.670 0.209 0.541

U
N

S
A

T

mod2-9-11 78.573 123.353 Sequential 2 0.637 0.318 2.140
mod2-9-4 80.753 113.850 Sequential 2 0.709 0.355 1.820
unif-r4 3246.920 2091.194 Many first 4 1.553 0.388 0.525

frb40-19-1 287.402 271.148 Few first 3 1.060 0.353 0.915
frb40-19-2 540.394 571.121 Few first 7 0.946 0.135 1.066
frb40-19-3 6340.410 7540.098 Few first 7 0.841 0.120 1.221
frb40-19-4 901.448 3548.995 Few first 2 0.254 0.127 6.874
frb40-19-5 4528.720 6313.364 Few first 2 0.717 0.359 1.788
mod2-3g14 877.347 1970.777 Few first 2 0.445 0.223 3.493
mod2c-11 75.333 237.513 Random 2 0.317 0.159 5.306
mod2c-15 26.554 113.870 Many first 2 0.233 0.117 7.577

S
A

T

sat2 66.552 149.822 Many first 2 0.444 0.222 3.502
unif-r5 360.687 130.581 Few first 2 2.762 1.381 -0.276

vmpc 21.rn 51.191 32.319 Few first 5 1.584 0.317 0.539
vmpc 23.rn 151.893 197.157 Few first 5 0.770 0.154 1.373
vmpc 25.rn 472.618 46.515 Many first 2 10.161 5.080 -0.803
vmpc 25.sf 25.826 384.740 Few first 10 0.067 0.007 16.442
vmpc 26.rn 142.121 1480.721 Few first 2 0.096 0.048 19.837
vmpc 26.sf 301.119 551.501 Few first 8 0.546 0.068 1.950
vmpc 27.rn 896.080 2904.091 Random 6 0.309 0.051 3.689
vmpc 27.sf 453.440 35.820 Random 2 12.659 6.329 -0.842

search mode (Mode), number of variables assumed (#V), number of workers (#W),
speedup (Spd.), efficiency (Eff.) and serial fraction (S. F.).

Table 9, displays the best times for the second set of tests. These times were inferior to
the best times of the first set of tests shown in Table 6. This demonstrates that the number
of variables assumed is as important as the search mode and plays a major role in the effort
to find the solution. The fastest search modes were Few first and Many first, which also
expresses the effectiveness of the Progressive method in the partition of the search space.

Super-linear speedups occurred frequently, most of them with SAT instances. The most
incredible speedups were achieved when instances that took more than 500, 1000 or even
5000 seconds in MiniSAT were solved in few seconds by PMSat, meaning that the partition
holding the solution was quickly (and one of the firsts being) explored.

About the worst times, presented in Table 10, many of them are 2 to 10 times higher
than the time spent by the sequential algorithm. This result confirms the same worst
times presented in the previous subsection, that the parallel search may also degradate
performance, specially when few worker tasks are used.
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Table 8. Average time by PMSat of all, just SAT and just UNSAT instances

for the second set of tests

#W Modes All instances SAT instances UNSAT instances

3 Few first 360.804 396.191 269.810

3 Many first 514.925 576.319 357.054

3 Random 479.217 572.181 240.165

3 Sequential 383.589 429.391 265.811

6 Few first 219.419 216.414 227.144

6 Many first 192.874 151.095 300.308

6 Random 448.592 560.982 159.590

6 Sequential 452.214 568.754 152.541

9 Few first 95.589 42.726 231.520

9 Many first 116.089 32.758 330.369

9 Random 472.791 598.701 149.021

9 Sequential 537.086 696.683 126.693

5.4 Load balance

The load distribution, or the time that each worker spends on computing, depends on the
time to solve the generated assumptions. There is no mechanism for automatic load balance
or on the fly subdivision of the search space and distribution through the idle workers (akin
to work stealing procedures). Since each assumption takes a different time to be solved, it
leads to potential load imbalances between the workers. But during our tests we found all
types of load balance. We will now report several situations that occurred, although they
should be generalized with care (or not at all). A work stealing approach is currently being
investigated to improve load balancing.

With UNSAT instances we found that with few workers, the time taken by them was
similar although they had solved a different number of assumptions. When the number of
workers increased, the load distribution remained similar with the Random and Sequential
modes or sometimes diverged with the Few first and Many first modes (some workers
ended quickly and others spent a long time with few assumptions). This is not necessarily
unexpected and is a consequence of the different sizes of the search space partitions when
progressive method is used. These are situations where stealing techniques that we are
currently investigating may prove useful. With the SAT instances, we found three situations:
the solution was in the hardest partition and one worker spent much time to find it while
the others finished after just a few seconds; there was a balance and all the workers took
similar time; or one worker found the solution while all (or some part of) the others were
still solving their first assumption. In this last case, the master aborts all running workers.
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Table 9. PMSat’s best performances for the second set of tests

Sol Instance MiniSAT PMSat Mode #V #W Spd. Eff. S. F.

fpga10 11 44.999 13.331 Random 2 2 3.376 1.688 -0.408

fpga10 12 158.474 52.116 Few first 5 3 3.041 1.014 -0.007

fpga10 13 161.586 181.370 Few first 5 3 0.891 0.297 1.184

hole11 723.157 64.229 Few first 41 9 11.259 1.251 -0.025

U
N

S
A

T

mod2-9-11 78.573 26.452 Few first 50 10 2.970 0.297 0.263

mod2-9-4 80.753 24.190 Sequential 7 10 3.338 0.334 0.222

unif-r4 3246.920 180.548 Random 7 9 17.984 1.998 -0.062

frb40-19-1 287.402 1.919 Many first 50 10 149.758 14.976 -0.104

frb40-19-2 540.394 5.743 Many first 50 10 94.090 9.409 -0.099

frb40-19-3 6340.410 9.868 Many first 50 10 642.548 64.255 -0.109

frb40-19-4 901.448 25.892 Few first 41 9 34.816 3.868 -0.093

frb40-19-5 4528.720 1.804 Few first 41 9 2510.234 278.915 -0.125

mod2-3g14 877.347 2.433 Few first 25 7 360.581 51.512 -0.163

mod2c-11 75.333 4.444 Few first 25 7 16.951 2.422 -0.098

mod2c-15 26.554 0.847 Random 5 5 31.348 6.270 -0.210

S
A

T

sat2 66.552 0.508 Few first 18 6 131.001 21.833 -0.191

unif-r5 360.687 0.810 Many first 41 9 445.267 49.474 -0.122

vmpc 21.rn 51.191 0.102 Many first 18 6 501.899 83.650 -0.198

vmpc 23.rn 151.893 0.133 Few first 41 9 1142.113 126.901 -0.124

vmpc 25.rn 472.618 0.529 Random 6 7 893.391 127.627 -0.165

vmpc 25.sf 25.826 3.833 Few first 41 9 6.737 0.749 0.042

vmpc 26.rn 142.121 2.334 Few first 13 5 60.888 12.178 -0.229

vmpc 26.sf 301.119 4.476 Many first 41 9 67.270 7.474 -0.108

vmpc 27.rn 896.080 9.311 Few first 41 9 96.243 10.694 -0.113

vmpc 27.sf 453.440 0.787 Sequential 6 6 576.142 96.024 -0.198

6. Conclusion

We have presented a new parallel SAT-solver, called PMSat [19], that is based on MiniSAT
and uses MPI technology, to be executed in clusters or in a grid of computers. It contains
several features including a high degree of portability, different search modes, sharing of
learnt clauses and pruning of the search space.

The development of PMSat gave us an indication of the potential contribution of parallel
computing in this field. It showed how a simple idea like domain decomposition together
with several search modes can introduce improvements into the search and decrease the
time spent. The differences in the performances obtained indicate that they depend on
the boolean formula, the search mode and the amount of variables used in assumptions.
Unfortunately it seems to be impossible to predict the program’s behavior as it seems to
be very dependent upon the structure of the search space of the particular problem under
analysis.
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Table 10. PMSat’s worst performances for the second set of tests

Sol Instance MiniSAT PMSat Mode #V #W Spd. Eff. S. F.

fpga10 11 44.999 138.720 Many first 41 9 0.324 0.036 3.343

fpga10 12 158.474 263.936 Many first 13 5 0.600 0.120 1.832

fpga10 13 161.586 515.525 Many first 8 4 0.313 0.078 3.921

hole11 723.157 970.758 Few first 2 2 0.745 0.372 1.685

U
N

S
A

T

mod2-9-11 78.573 75.082 Random 2 2 1.046 0.523 0.911

mod2-9-4 80.753 78.703 Random 2 2 1.026 0.513 0.949

unif-r4 3246.920 2818.094 Few first 32 8 1.152 0.144 0.849

frb40-19-1 287.402 315.537 Sequential 2 2 0.911 0.455 1.196

frb40-19-2 540.394 445.817 Many first 5 3 1.212 0.404 0.737

frb40-19-3 6340.410 5347.412 Many first 5 3 1.186 0.395 0.765

frb40-19-4 901.448 2218.451 Sequential 6 6 0.406 0.068 2.753

frb40-19-5 4528.720 4980.721 Random 6 8 0.909 0.114 1.114

mod2-3g14 877.347 1757.525 Sequential 2 2 0.499 0.250 3.006

mod2c-11 75.333 119.166 Many first 2 2 0.632 0.316 2.164

mod2c-15 26.554 60.001 Many first 8 4 0.443 0.111 2.679

S
A

T

sat2 66.552 139.505 Sequential 2 2 0.477 0.239 3.192

unif-r5 360.687 250.100 Many first 2 2 1.442 0.721 0.387

vmpc 21.rn 51.191 55.452 Random 2 2 0.923 0.462 1.166

vmpc 23.rn 151.893 116.994 Sequential 6 6 1.298 0.216 0.724

vmpc 25.rn 472.618 444.469 Random 2 2 1.063 0.532 0.881

vmpc 25.sf 25.826 469.870 Sequential 4 3 0.055 0.018 26.791

vmpc 26.rn 142.121 1957.178 Random 4 4 0.073 0.018 18.028

vmpc 26.sf 301.119 730.186 Random 4 3 0.412 0.137 3.137

vmpc 27.rn 896.080 2770.463 Few first 2 2 0.323 0.162 5.184

vmpc 27.sf 453.440 42.710 Many first 50 10 10.617 1.062 -0.006

The parallel search allowed to solve some instances in seconds if the right partition was
explored. As a consequence, super-linear speedup is an achievable reality. But there does
not seem to be a best search mode, because the results show that with 6 variables the
predominant modes were Random and Few first, but with different granularity the modes
Few first and Many first emerged as the fastest, indicating that the Progressive method,
proposed in this paper, should be considered as a serious alternative to Equal.

In the tests of granularity the majority of the better times were achieved with a large
number of variables and workers. This seems to be a good combination to get significant
performance improvements as well as better load balancing. So fine-grained granularity
with a large number of processors appears to hold better promise.

Features such as removing assumptions with conflicts or sharing learned clauses, pre-
sented few good results and did not influence the performance as expected, because we
were hoping that they could improve the search and reduce the time more often. We do not
believe that this is necessarily always the case, so this issue should be revisited in future
work and perhaps more elaborate techniques pursued.
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Additionally for future research we might suggest several decisions and features to be
implemented and studied, such as different heuristics to select the variables, new methods
to partition the search space, learnt clause sharing, or a system of load balancing.
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[16] C. Sinz, W. Blochinger, W. Küchlin, PaSAT - Parallel SAT-Checking with Lemma
Exchange: Implementation and Applications, Electronic Notes in Discrete Mathemat-
ics (LICS 2001 Workshop on Theory and Applications of Satisfiability Testing (SAT)),
pp 205-216, 2001.

[17] H. Zhang, SATO: A decision procedure for propositional logic, Association for Auto-
mated Reasoning Newsletter, 22, 1-3, March 1993.

[18] H. Zhang, M. P. Bonacina, J. Hsiang, PSATO: a distributed propositional prover and
its applications to quasigroup problems. Journal of Symbolic Computation, 1996.

[19] PMSat solver is available for download at http://algos.inesc-id.pt/∼pff/pmsat

98

http://www.satcompetition.org
http://algos.inesc-id.pt/~pff/pmsat

	Introduction
	Background and previous work
	Logic and SAT-solvers
	Parallel SAT-solvers
	Choices and features for PMSat

	Parallel Algorithm
	Algorithm partition
	Architecture and work flow

	PMSat implementation choices
	Variables selection
	Assumptions generation
	Equal method
	Progressive method

	Assumptions pruning
	Learnt clauses
	Automatic settings

	Results
	Performance metrics
	Benchmarks and test methodology
	Performance tests
	Sequential times
	Performance tests with 6 variables
	Performance tests with different number of variables

	Load balance

	Conclusion

